Home > Archives for November 2011
Management Theory Review - Bilbliography
http://centres.exeter.ac.uk/cls/documents/mgmt_standards.pdf
C
Competitiveness Theory
Momaya
http://una.co.in/downloads/Competitiveness%20fo%20Firms-%20Review%20of%20Theory,%20fw%20-%20Singapore%20Management%20Review%20Paper-%20Dr.%20Ajitabh.pdf
F
Four ManagmentTheories
http://www.kernsanalysis.com/sjsu/ise250/history.htm
S
Strategic Issue Managment - Theory Review
https://wiki.aalto.fi/download/attachments/7176236/Strategic_Issue_Management_Theory_review_Kunnas.pdf?version=1&modificationDate=1226694674000
Engineering Economy or Engineering Economics: Economic Decision Making by Engineers
Engineering Economy: An Explanation
Economic Decision Making
Executives are Unprepared for Economic Decision Making
Engineering Efficiency Versus Financial Efficiency
Searching for Low Engineering Efficiency Alternatives
Cost Reduction Expenditures and Income Expansion Expenditures
Expenditure and Investment proposals can be for cost reduction or income expansion. In some cases, both may be realized. A characteristic of cost reduction expenditure is that the decision does not affect the gross income. A decision in which the gross income increases is an income expansion proposal. For both the proposals, economic decision making is essential.Rate of Return on Capital (Finance)
Cost of Capital
Profit: Accounting and Economics Viewpoints
Engineering Economy Study
Is There a Need for Engineer to Involve Themselves in Financial Calculations?
References
Engineering Economics is an Efficiency Improvement Tool for Industrial Engineers
Engineering Economic Appraisal - A Special Role for Industrial Engineers
Engineering economic analysis is to be carried out by all engineers. These analysis reports must be appraised by IE department engineers. IEs can evaluate whether sufficient technical alternatives were considered in proposing the technical solution now recommended and then check the data and calculations of the economic analysis. From IE department, the proposal can go the project appraisal committee.
Engineering Economics is part of Industrial Engineering Tool Kit
Industrial Engineering Tool Kit
_________________________________________________________________________________
Related Articles
Bibliography
Anthony C. Fisher, University of California, Berkeley and Giannini Foundation, David Fullerton, Nile Hatch, Peter Reinelt
Recently Published Books
White, Case, Pratt
ISBN 978-0-470-11396-7, © 2010
http://knol.google.com/k/engineering-economy-or-engineering-economics-economic-decision-making-by
Introduction to Engineering Economics
Engineers must decide if the benefits of a project exceed its costs, and must make this comparison in a unified framework. The framework within which to make this comparison is the field of engineering economics, which strives to answer exactly these questions, and perhaps more.
It seems peculiar and indeed very unfortunate that so many authors in their engineering books give no, or very little consideration to costs, in spite of the fact that the primary duty of the engineernig is to consider costs in order to obtain real economy- to get the most possible number of dollars and cents: to get the best financial efficiency.
O.B. Goldman, Financial Planning, John Wiley & Sons, New York, 1920.
It would be well if engineering were less generally thought of, and even defined, as the art of constructing. In a certain important sense it is rather the art of not constructing; or, to define it rudely but not ineptly, it is the art of doing that well with one dollar which any bungler can do with two after a fashion.
A.M. Wellington, The Economic Theory of the Location of Railways, John Wiley, New York, 1887
The subject confines of engineering economy were staked out in 1930 by Eugene L. Grant in his book 'Principles of Engineering Economy".
WHY DO ENGINEERS NEED TO LEARN ABOUT ECONOMICS?
Ages ago, the most significant barriers to engineers were technological. The things that engineers wanted to do, they simply did not yet know how to do, or hadn't yet developed the tools to do. There are certainly many more challenges like this which face present-day engineers.
But now, natural resources (from which we must build things) are becoming more scarce and more expensive. We are much more aware of negative side-effects of engineering innovations (such as air pollution from automobiles) than ever before.
For these reasons, engineers are asked more and more to place their project ideas within the larger framework of the environment within a specific planet, country, or region. Engineers must ask themselves if a particular project will offer some net benefit to the people who will be affected by the project, after considering its inherent benefits, plus any negative side-effects (externalities), plus the cost of consuming natural resources, both in the price that must be paid for them and the realization that once they are used for that project, they will no longer be available for any other project(s).
Simply put, engineers must decide if the benefits of a project exceed its costs, and must make this comparison in a unified framework. The framework within which to make this comparison is the field of engineering economics, which strives to answer exactly these questions, and perhaps more.
The Accreditation Board for Engineering and Technology (ABET) states that engineering "is the profession in which a knowledge of the mathematical and natural sciences gained by study, experience, and practice is applied with judgment to develop ways to utilize, economically, the materials and forces of nature for the benefit of mankind".
http://www.isr.umd.edu/~austin/ence202.d/economics.html
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa
McGraw Hill, New York, 1996
MIT Open Courseware
ESD.70J / 1.145J Engineering Economy Module, Fall 2008, Excel based course
http://ocw.mit.edu/OcwWeb/Engineering-Systems-Division/ESD-70JFall-2008/CourseHome/index.htm
A NEW FRAMEWORK FOR ENGINEERING ECONOMICS
Basic Engineering Economics - a PDH Online Course for Engineers
Article Originally posted in
http://knol.google.com/k/narayana-rao/introduction-to-engineering-economics/2utb2lsm2k7a/248
Engineering Economics or Economy - Typical Problems
Sppwf (32%, 3 years) = 0.435
2. By spending $30,000 for a conveyor, a factory expects to save $6,000 a year for the next 7 years in the cost of handling material. The conveyor belt will have zero salvage value at that end of 7 years. If the cost of capital for the project is 18%, should the company invest in this project?
Uspwf(18%,7 years) = 3.812
3. A company can overhaul a machine now for $2000. It can wait unit the end of the year also. But during the year it will suffer a cost $400 due to idle labor. If the cost of capital is 20%, what is the right decision?
Spfwf(20%,1year) = 1.2
4. A machine needs to be maintained at a cost of $500 at the end of the year, and this cost is expected to increase by $50 a year over its 10 years further life. A overhaul of the machine costs $2000$ and this will reduce the maintenace expenditure to $100 per year. Should the company go for the overhaul if its minimum rate of return required is 20%?
Uspwf (20%,10 years) = 4.193
5. A company can purchase a new special-purpose lathe for $7,500 installed cost. The annual cost of running this machine that includes labor, power, and maintenance, is $2,500. The other alternative is a general purpose machine that can be installed for $4,500 and the anual cost is $3,250 a year. The life of both the machines is expected to be 10 years and the salvage values are expected to be $750 and $500. If the company's minimum required rate of return is 15%, which machine should be recommended?
Sppwf (15%,10years) = 0.247; Uspwf (15%,10 years) = 5.019
Originally posted in
http://knol.google.com/k/narayana-rao/engineering-economics-or-economy/2utb2lsm2k7a/713
Time Value of Money
This topic explains the various concepts used to calculate future values or present values of a series of cash flows that result from engineering decisions to buy new equipment or replace old equipments.
Introduction
Single Payment Cashflow
Uniform Periodic Payments
Discounting of uniform series of cash payments
P = R [(1+i)n - 1]/[i 1+i)n ]
Where
P = Present Value
R = Uniform series of periodic payments
i = interest rate
n = number of periods of payments
These time value formulas are expressed in factors
A = P*Single payment future worth factor =P*Spfwf
P = A* Single payment present worth factor = A*Sppwf
S = R* Uniform series future worth factor = R*Usfwf
P = R*Unform series present worth factor = R*Uspwf
Two More Factors
Sinking Fund Deposit Factor
Sfdf = 1/Usfwf
Sinking fund is fund accumulated with periodic payments for incurring a lumpsum expenditure at the end of a long period. Sfdf gives the amount to be deposited at the end of each period for n period to accumulate one dollar at the end n periods.
Capital Recovery Factor
Crf = 1/Uspwf
Capital recovery factor gives the uniform payment to be received by you at the end period of n years to get recover back the investment you made today.
The factor tables are available and factors depend on interest rate i and term n.
Factors for a required rate of return of 10% and 5 years term.
Spfwf - 1.6105
Sppwf - .62092
Usfwf - 6.1051
Uspwf - 3.7908
Sfdf - 0.16380
Crf - 0.26380
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
Visit http://nraomtr.blogspot.com/ for Management Knols of Narayana Rao
http://knol.google.com/k/narayana-rao/time-value-of-money/2utb2lsm2k7a/ 249
Present-Worth Comparisons
Net present worth (NPW) or Net present value (NPV) is the difference between the present worths of benefits and costs of an engineering decision. It is the most widely used present-worth model.
Illustrative Problem
A single underground transmission circuit is needed immediately, and load studies indicate the need for a second circuit in 6 years. If provision is made for a second conduit when the conduit for the first circuit is installed, there will be no future need for reopening, trenching, backfillng, and repaving.
the cost of installing a single circuit wiht minimum preparation for the eventual second circuit is $850,000. the installation of the second circuit will be considered to cost $800,000 at the end of year 6 in order to be in operation by the beginning of year 7. If the second circuit is installed immediately, the total cost will be $1.4 million.
Constant annual operating and maintenance costs of the circuits are 8 percent of the first cost. The average life of a circuit is 20 years. The required rate of return on such investments is 10 percent before taxes.
To take a decision, Comparison of the deferred investment with the immediate investment needs to be made.
(Exercise Problem 3.25, Riggs)
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
http://knol.google.com/k/narayana-rao/present-worth-comparisons/2utb2lsm2k7a/250
Updated 21.4.2012
Required Rate of Return for Investment or Expenditure Proposal
Each business expenditure proposal that holds forth prospects of profits can be termed as investment. Investment is defined as spending money with the expectation of profits.
Business firms are users of capital. The user of capital has to satisfy the profit motive of the suppliers of capital. There is cost for using capital.
Introduction - Business Expenditure or Investment
Each business expenditure proposal that holds forth prospects of profits can be termed as investment. Investment is defined as spending money with the expectation of profits.
Deferment of present ability to consume to a future period is done by persons due to profit motive. The profit motive can be explained as the inducement that causes man to forego satisfying his present desires based on the prospects of satisfying greater ones in the future. Thus, every individual is motivated by profit for his personal investment decisions or deferment of consumption decisions. Professional managers of corporations are being paid to perform activities that satisfy the profit motive of the corporation's shareholders.
Cost of Capital and Profit Motive
Business firms are users of capital. The user of capital has to satisfy the profit motive of the suppliers of capital. There is cost for using capital. The cost may be a contractual obligation in case of loans and bonds. It good be a good faith obligation in case of equity capital. The manager is charge of the firm is expected to undertake activities in line with the business plans and execute them to obtain the expected profit.
Sources of Return
Capital is productive. It is continuously invested in fresh investment or expenditure opportunities that yield more profit than the current projects. From this statement, the concept of opportunity cost arises. Whenever any person is contemplating a new expenditure proposal money is being diverted to the new proposal from an old project or currently planned project. The return anticipated from the current project is the floor for the new project. The new project has to give a rate of return that is higher than that of the current selected opportunity. Thus every new proposal has an opportunity cost of capital.
Every proposal that clears the test of opportunity cost of capital is giving profit. Thus owners of capital or professional managers invest their capital in efficient proposals that give profits.
Determination of Cost of Capital
A corporation's capital is sourced from variety of suppliers. Equity Capital, Preferred Share Capital, Profits Retained or Ploughed back and debt capital are the main instruments through which capital is acquired by companies or corporations. To estimate the total cost of capital, the cost of each source of capital is to be first estimated. Then the weight of each source of capital in determined and the weighted average of various costs of capital gives the company cost of capital. This exercise can be done for each proposed project.
Originally posted in
http://knol.google.com/k/narayana-rao/required-rate-of-return-for-investment/2utb2lsm2k7a/1200
Rate-of-Return Calculations
Internal rate of return (IRR) of an engineering decision can be compared with the minimum acceptable rate of return set by the organization.
IRR is calculated by equating the annual, or present, or future worth of cash flows to zero and solving for the interest rate that allows the equality
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
Online Resources
http://www.ie.bilkent.edu.tr/~ie342-3/Lecture%20No25.ppt
_____________ _____________
_____________ _____________
_____________ _____________
Originally posted in
http://knol.google.com/k/narayana-rao/rate-of-return-calculations/2utb2lsm2k7a/ 252
Equivalent Annual-Worth Comparisons
With an annual worth method, all the receipts and disbursements occuring over a period of time due to an engineering alternative are converted to an equivalent uniform yearly payment. Such a calculation can give annual cost of various alternative engineering alternatives.
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
For more details
http://ise.tamu.edu/people/faculty/butenko/INEN303/chap6.pdf
Problems and Solutions on Equivalent Annual Worth
Originally posted in
http://knol.google.com/k/narayana-rao/equivalent-annual-worth-comparisons/2utb2lsm2k7a/ 251
Replacement Analysis
Replacement refers to a broad concept embracing the selection of similar but new assets to replace existing assets as well as selection of entirely different ways to perform the function supported by the earlier asset.
Replacement decisions are a choice between the present asset, called defender and currently available alternatives termed as challengers.
Varieties of Replacement Necessity
Replacement due to deterioration
Replacement due to obsolescence
Replacement due to inadequacy
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
Online Material
Automobile replacement case studies for engineering economy classes
Engineering Economist, The, Spring 1998 by Hartman, Joseph C
http://findarticles.com/p/articles/mi_qa3621/is_199804/ai_n8801745
http://www.ise.ufl.edu/ein4354/Downloads/ch13/Ch13.ppt
Originally published in
http://knol.google.com/k/narayana-rao/replacement-analysis/2utb2lsm2k7a/ 254#
Replacement Problem - Engineering Economy Analysis
A full sized machine can be purchased for $15,000 with operating disbursements of $7,600.
The economic life of all three machines is estimated to be 10 years with salvage values equal to 10% of the present values.
Compare the machines and determine the best option for the company.
Assume any data you need.
Reference
Taylor, George A., Managerial and Engineering Economy, Van Nostrand, 1964.
Originally posted in
http://knol.google.com/k/narayana-rao/replacement-problem-engineering-economy/2utb2lsm2k7a/596#
Machine Selection Problem for an Engineer - Engineering Economic Analysis
He has two alternatives.
The new machine costs Rs.3,33,800. At the end of each year of use its market value is estimated to be Rs. 2,75,000, rs.2,20,000, Rs.1,71,000, Rs.1,29,000, Rs.89,000, Rs.57,500, Rs.30,000 and Rs.20,000.
In the first year the operating cost will be Rs.30,000. In the subsequent years it keeps increasing to Rs.30,500, Rs,32,500, Rs.37,000, Rs,48,000, Rs.60,500, Rs.75,000 and Rs.92,500.
The alternaive is a second hand machine. it costs 1,29,000. Its resale value infuture years will be Rs.89,000, Rs.57,100, Rs.30,000 and Rs.20,000.
The operating cost will be 57,000 in the first year, and will be Rs.62,000, Rs.68,000 and Rs. 75,000 in future years.
What should be the recommendation of the engineer?
Originally posted in
http://knol.google.com/k/narayana-rao/machine-selection-problem-for-an/2utb2lsm2k7a/597#
Depreciation and Income Tax Considerations
Depreciation charges are not actual cash flows.
Engineering economic analysis needs to take into consideration the depreciation methods that can be used by the organization.
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
Originally posted in
http://knol.google.com/k/narayana-rao/depreciation-and-income-tax/2utb2lsm2k7a/256
Sensitivity Analysis
Sensitivity analysis provides a second look at an economic evaluation.
Lurking behind every decision are "what if" doubts?
What if sales are less than forecasts?
What if a new, far better challenger becomes available?
Sensitivity analysis involves repeated computations with different cash flow elements and analysis factors to compare results obtained from these substitutions with results from the most likely scenario incorporated into the original plan.
Sensitivity analysis gives an estimate of the risk of the proposed decision.
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
Orinigally posted in
http://knol.google.com/k/narayana-rao/sensitivity-analysis/2utb2lsm2k7a/258#
Structural Analysis of Alternatives
Selection of engineering alternatives from a set of alternatives depends on the structure of the set.
Independent alternatives are those wherein the acceptance of one alternative has no effect on the acceptance of the any other alternative in the group.
In the dependent group of alternatives there may be mutually exclusive alternatives and contingently dependent alternatives.
Mutually exclusive alternatives means, when one alternative is selected, the other alternative cannot be employed.
In contingently dependent alternatives, if one is selected the other one or others have to implemented.
References
Engineering Economics, 4th Edition, James L. Riggs, David D. Bedworth, and Sabah U. Randhawa, McGraw Hill, New York, 1996
Originally posted in
http://knol.google.com/k/narayana-rao/structural-analysis-of-alternatives/2utb2lsm2k7a/253#
Peter Drucker - Business Organization - Economic Function - Social Responsibility
In a desperate situation, some were drawn to Marxism, which in turn undercut traditional values and institutions and paved the way for Fascist dictatorships. Both Fascism and Marxism, as Drucker saw them, were escapist; they could thow out established order using existing discontent as leverage but never fulfill human needs.
People need a society that could provide freedom, "status," and "function," and it is the task of business managers to help create such a society by shaping the workforce into the industrial citizens and the company into a community.
In subsequent works, particularly in The Future of Industrial Man (1942), Concept of the Corporation (1946), and The New Society (1949), Drucker emphasized that only satisfying work could fulfill the needs of individuals for autonomy, security, dignity, usefulness, belonging, and peer respect. Work was needed as much to provide "status and function" as income. People will be frustrated when managers valued labor only as a commodity. Through responsible acts of "citizenship" by manager and worker alike, the social and the economic needs of the individual, could be brought into "harmony" and thus fulfilled in the business organization.
In the case of managerial goals, Drucker acknowledged that economic goals must come before social ones. If the firm went bankrupt, managers would be unable to sutain the corporate community. Corporate "survival" depended on making a profit that not only covered costs but provided insurance against future risks. To make such a profit, managers must "create" customers by providing them with useful products and services.
The primacy of economic performance, however, should not obscure the thought that the business corporation was "as much a social organization, a community and society" as it was "an economic organ." In the "new society," which was an employee society, the firm had a responsibility to realize social values and fulfill individual needs.
Drucker expanded his ideas in later years by insisting that managers select socially responsible goals for the enterprise. He rejected the power of the market and the notion that a "hidden-hand" in the marketplace naturally converted "private vices" into "public virtues." He had never believed that competition automatically solved social problems. He diagreed with Milton Friedman's argument that businessmen should stick to "business" and should refrain from appointing themselves guardians of the common good. According to Drucker, business men were running social organizations that could help society and realize "social values." Like anyone else, they also had "a self-interest in a healthy society," and so they should follow normal ethical imperatives. Moreover, for Drucker, managers were the only true "leadership group" in modern society. If they did not "take responsibility for the common good," then no one else could or would.
Reference
Stephen P. Waring, "Peter Drucker, MBO, and the Corporatist Critique of Scientific Management" in
http://www.ohiostatepress.org/books/Complete%20PDFs/Nelson%20Mental/10.pdf
Source knol - 2163
Management Theory Blogs
http://nraomtr.blogspot.com/
Perspectives on Management and Governance
http://www.gordonpearson.co.uk/
Mark Woeppell on Management and Execution
http://pinnacle-strategies.com/blog/
Management Adventures by Dr. Jose D. Lepervanche, Professor Supervision and Management, Florida State College at Jacksonville, Kent Campus
http://www.managementadventures.org/
Human Resources Management
http://practicehrm.blogspot.com/
Organizational Design, Development and Change
http://organisationaldesign.wordpress.com/
Research
Supply Chain Management Research
http://scmresearch.org/
Practice oriented
Strategic Leadership Institute Website
http://strategicleaders.wordpress.com/
Marketing Strategy - Differentiating and Positioning the Market Offering
Marketing Strategy
Philip Kotler discussed five issues of marketing strategy in his 9th edition of Marketing Management
These issues are covered in different knols by me.
(Author's personal note: Management Theory Revision, a new blog will have all the management articles published by me on Knol and will be come MBA Revision Guidebook, the project that I started on Knol.
This knol describes differentiating and positioning.
Differentiating and Positioning the Market Offering
- Tools for Competitive Differentiation
- Developing a Positioning Strategy
- Communicating the Company’s Positioning
Tools for Competitive Differentiation
Five Dimensions of Differentiation
Performance - the performance of the prototype or the exhibited sample,
Conformance - The performance of every item made by the company under the same specification
Services differentiation
Developing a Positioning Strategy
Positioning is the result of differentiation decisions. It is the act of designing the company's offering and identity (that will create a planned image) so that they occupy a meaningful and distinct competitive position in the target customer's minds.
Volvo (station wagon)
Target customer-Safety conscious upscale families,
Benefit - Durability and Safety,
Price - 20% premium,
Value proposition - The safest, most durable wagon in which your family can ride.
How many differences to promote?
Which differences to promote:
References
Philip Kotler - Marketing Management
Related Articles
- Marketing Strategy for New Industry Products
- Marketing Strategies for Challenger Firms
Firms take the role of challengers when they make aggressive efforts to further their market share.
Management Articles and Concepts Directory
Most Popular Online Articles by Narayana Rao
Management Theory Review Blog
http://nraomtr.blogspot.com
Peter Drucker on Scientific Management - Industrial Engineering
"Scientific management is our most widely practised personnel management concept" said Peter Drucker in his book The Practice of Management. The concepts of scientific management underlie the actual management of worker and work in American Industry. The core of scientific management is the organized study of work, the analysis of work into its simplest elements and the systematic improvement or design of each of these elements. Drucker emphasized that scientific management has both basic concepts and easily applicable tools and techniques to carry out it intended job. Its contribution is visible in the form of higher readily measurable output.
Scientific management is a systematic philosophy of worker and work. As long as industrial society endures, we will not forget the insight that human work can be studied systematically, can be analyzed, can be improved by work on its elementary parts. Scientific management was a great liberating and pioneering insight. Without it a real study of human beings at work would not have been possible. Scientific management or industrial engineering has penetrated the entire world. Yet is has been stagnant for a long time. From 1890 to 1920 Scientific Management produced one brilliant insight after the other and creative thinkers like Taylor, Gantt and Gilbreths. During the last thirty years, it has given us little. There are exceptions like Mrs Lillian Gilbreth and the Late Harry Hopf.
According to Drucker, the lack of progress is due to two blind spots. One was the thinking that each element has to be done by one worker. Taylor saw the need to integrate and Harry Hopf certainly advocated it. According to Drucker, IE has not provided good integration tools or concepts, both individual elements and the special qualities of each man.
The second blind spot according to Drucker is insistence on divorce of planning and doing.
Drucker concluded his discussion of the topic with the statement, 'We must preserve the fundamental insights of Scientific Management - just as we must preserve those of Human Relations. But we must go beyond the traditional application of Scientific Management, must learn to see where it has been blind. And the coming of the new technology makes this task doubly urgent."
References
Peter Drucker in his book The Practice of Management, First Edition, 1955, Current Print 2006, Butterworth Heinemann, .pp.273-281
Plant Layout - Efficiency
Minimum Floor space: Efficient layout engineering can minimize floor space for a specified production output.
Minimum Materials Handling: Efficient layout results in minimum amount and cost of materials handling.
More Efficient Utilization of Machinery and Labor: An efficient layout eliminates general production delays, occasioned by congested aisles, cramped storage areas, crowding of machine layout, and improper materials handling devices, all of which lead to a slowing down of the production process as a whole and in general reduction in the output of goods from a given quantity of production machinery and labor.
Maximum flexibility of production facilities consistent with low cost of production: Production facilities and layout can be designed to attain flexibility and adaptability to meet changing economic and technological conditions.
Reference: John A. Shubin and Huxley Madeheim, Plant Layout: Developing and Improving Manufacturing Plants, Prentice Hall of India, New Delhi, 1965.
___________________________________________________________________________
Plant Layout Optimization
___________________________________________________________________________
Clever layout enhances bottling efficiency, 2002
http://www.packworld.com/article-11019
Plant Layout Analysis
http://www.slideshare.net/sarangbhutada/case-study-for-plant-layout-a-modern-analysis-presentation
The Dynamics of Plant Layouts
Management Science, January 1986. (Interesting paper)
http://watha.gendit.com/Phd/Network/Dynamic%20of%20Plant%20Layout.pdf
An Interesting Book in NITIE library
John A. Shubib, Ph.d and Huxley Madeheim, Plant Layout: Developing and Improving Manufacturing Plants, Prentice Hall, 1963. (658.23/742)
Originally posted in Knol number 2800
Updated 2 August 2012
Private Equity - Business concept
an IPO,
a sale or merger of the company,
or a recapitalization.
Leading investment banks are committing their own capital or principal money to PE investments. Also various sponsors are floating PE funds to attract funds from HNIs into PE investments.
Most private equity funds require significant initial investment (usually upwards of $1,000,000) plus further investment for the first few years of the fund.
Limited partnership interest is the dominant legal form of private equity investments.
Once invested, money is locked-up in long-term investments which can last for as long as twelve years. Distributions are made only as investments are converted to cash; limited partners typically have no right to demand that sales be made.
If a private equity firm can't find good investment opportunities, it will not draw on an investor's commitment.
The risk of loss of capital is typically higher in venture capital funds, which invest in companies during the earliest phases of their development, and lower in mezzanine capital funds, which provide interim investments to companies which have already proven their viability but have yet to raise money from public markets.
Consistent with the risks outlined above, private equity can provide high returns, with the best private equity managers significantly outperforming the public markets.
The potential benefits of annual returns can range up to 30% for successful funds. It may not be the average return on PE funds.
PE Roots
The roots of PE and venture capital are same. In 1946, the American Research and Development Corporation (ARD) was formed to encourage private sector institutions to help provide funding for soldiers that were returning from World War II. They had an operating philosophy that was to become significant in the development of both private equity and venture capital: they believed that by providing management with skills and funding, they could encourage companies to succeed and in doing so, make a profit themselves. ARD succeeded in raising approximately $7.4 million, and they did have one rousing success; they funded Digital Equipment Corporation (DEC). By the 1970s such private participation had permeated into the private enterprise formation, but till in the late 1970s, the task was being largely carried out by investment arms of a few wealthy families, such as the Rockefellers and Whitneys. In the 1980’s, FedEx and Apple were able to grow because of private equity or venture funding, as were Cisco, Genentech, Microsoft, Avis, Beatrice Foods, Dr. Pepper, Gibson Greetings, and McCall Patterns.
Most private equity funds are offered only to institutional investors and individuals of substantial net worth. This is often required by the law as well, since private equity funds are generally less regulated than ordinary mutual funds. For example in the US, most funds require potential investors to qualify as accredited investors, which requires $1 million of net worth, $200,000 of individual income, or $300,000 of joint income (with spouse) for two documented years and an expectation that such income level will continue.
Books
Private Equity Funds: Business Structure and Operations,
By James M. Schell, Published 1999, Law Journal Press.
Gives attorneys, investment professionals, tax practitioners, and corporate lawyers the tools and guidance needed to handle various aspects of a private investment fund.
Private Equity: Fund Types, Risks and Returns, and Regulation
By Douglas Cumming
John Wiley, 2010
http://books.google.com/books?id=WPu3t_-RmLsC
Product Design Efficiency Engineering
Product design efficiency engineering is an activity of industrial engineers.
Industrial engineers are system efficiency designers. They evaluate the efficiency of various functional system designs proposed by functional designers and managers and wherever inefficiencies are found, will facilitate removal of them.
Product design efficiency engineering is an activity of industrial engineers. As a part of the method study, the techniques of methods efficiency engineering, industrial engineers examined the efficiency of design. The development of value engineering systematized the product design efficiency engineering process. L.D. Miles started the value engineering process and did an immense service to the society.
Efficiency of the designs is analyzed with respect to its functions, its features, subassembly design, component specifications including tolerances and fits, material specifications, use of standard boughtout parts, and manufacturing processes employed in value engineering. Value engineering practice has given immense savings in the product costs in various industrial sectors.
Knol: Part of Industrial Engineering Course Page -
Introduction to Industrial Engineering - Course at NITIE
___________________________________________________________________________________________
Web Page Related to Design Efficiency
Design Efficiency Will Keep Your Product From BOMing Out
http://electronicdesign.com/article/boards-modules-systems/design-efficiency-will-keep-your-product-from-bomi.aspx
Fitting Product Design to Production Efficiency
http://www.industryweek.com/articles/fitting_product_design_to_production_efficiency_15335.aspx
Shaping Efficiency Using CHiL Semiconductor Digital Algorithms
http://www.pddnet.com/editorial-david-williams-shaping-efficiency-using-chil-semiconductor-digital-algorithms-042310/
Palletisation efficiency as a criterion for product design
By Eberhard E. Bischoff
Journal: OR Spectrum, Issue Volume 19, Number 2 / April, 1997, Pages:139-145
Design Efficiency of Market Seeker Strategy and Marker Leader Strategy
http://www.idemployee.id.tue.nl/g.w.m.rauterberg/conferences/CD_doNotOpen/ADC/final_paper/153.pdf
INTELLIGENT DESIGN, EFFICIENCY, AND FUNCTIONALITY:
THE H1B BENT AXIS MOTOR ADVANTAGE
Bob Jensen, Technical Support Team Engineer, Sauer-Danfoss
December 14, 2009
http://www.sauer-danfoss.com/stellent/groups/public/documents/web_content/c019192.pdf
Project Management - Introduction - Revision Article
Definition: The Project Management Institute has defined a project as "A temporary endeavor undertaken to create a unique product or service."
Program refers to an exceptionally large, long-range objective that is broken down into a set of projects. The projects are divided into tasks. Tasks are further broken down into work packages. Work packages contain work units.
Project Management - Definition and Objectives
In the past several decades many organizations are using project management as a basis to achieve the objectives of the organzation. Project management approach is providing organizations with powerful tools that improve the ability to plan, implement, and control activities as the utilization of resources.
The development of the techniques and practices of project management were developed more in the military organization. Meredith and Mantel give credit to government and military organizations for developing project management approach.
The three project objectives are stated as performance (scope), time and cost.
Definition: The Project Management Institute has defined a project as "A temporary endeavor undertaken to create a unique product or service"
Distinction Between Program, Project, Task and Work Packages: The military is the source of these terms. Program refers to an excetionally large, long-range objective that is broken down into a set of projects. The projects are divided into tasks. Tasks are further broken down into work packages. Work packages contain work units.
Attributes That Characterise A Project:
Purpose: A project has a well-defined set of desired end results.
Life cycle: Project will have slow beginning, size gets buildup. Peaks, then declines and has to be terminated on some day. Either it is handed to the client or it is phased into the normal, ongoing operations of their organization itself.
Interdependencies: A project has relations with other project being undertaken by the organization for various facilities. It also will have relations with various functions of the organization like marketing, accounting, finance, human resoures management etc.
Uniqueness: every project being a one time activity has some elements that are unique. Project managers will have many exceptions or new issues that crop up that they have to manage.
Conflict: Projects compete with other projects as well as requirements of various functional departments of the organization for resources and personnel. Also, project managers have to manage the conflict between the demands of the client for more and features and changes, parent organization for profit, some demands made by public where the project is located, and the project employees’ demands.
Why Project Management?
Project management focuses the responsibility and authority for the attainment of the goals of the project on an individual or small group. The project form of organization allows the manager to be responsive to:
1. the client
2. environment
3. identify problems at an early and correct them in a timely fashion.
4. ensures that managers of the separate tasks or activities of a project do not optimize their individual tasks at the expense of the total project. Suboptimization is avoided.
The Structure of the Textbook by Meredith and Mantel
It begins with the creative idea that launches most projects and end with termination of the project. The authors wrote in the 5th edition that creation of initial concept of the project was universally ignored in books project management. In their book , Meredith and Mantel included two appendices on topics creativity and idea generation and technological forecasting. In the 5th edition they moved these topics from the textbook to internet. The appendices are now available in http://www.wiley.com/college/projectmgt/
12 Vital Rules for Project Managers
1. You have to understand the project purpose and context.
2. You need to identify the stakeholders in the project and understand their wants.
3. You have to accept and use the political nature of organizations in allocation of resources.
4. You have to recognize the conflicts that are arising as the project is progressing.
5. As a project manager you need to lead from the front.
6. You have to understand what “success” means for the project every day.
7. You have to build and maintain a cohesive team.
8. Remember enthusiasm and despair are both infectious.
9. Looking forward and planning is important. One look forward is worth two looks back.
10. Always be sure of what you are trying to do.
11. Manage time – Use time carefully or it will use you.
12. Plan, plan, plan
Based on the reading given in the book “Lessons for an Accidental Profession,” by J.K. Pinto and O.P. Kharbanda, Business Horizons, March-April 1995.
______________________________________________________________________________________
Selling Process - 10 Steps
Selling Skills - Process - Article - Series
Steps in selling process
1. Prospecting
2. Call planning
3. The visit – preliminaries
4. Presentation
5. Trial close
6. Listening to the objections
7. Objection handling
8. Trial close
9. Close
10. Follow-up and service
Description and explanation of each step - Knol References
Selling Process – Prospecting
1. Prospecting
Selling Process – Prospecting
http://nraomtr.blogspot.com/2011/11/selling-process-prospecting.html
2. Call planning
Sales Process – Call Planning
http://nraomtr.blogspot.com/2011/11/sales-process-call-planning.html
3. The visit – preliminaries
Approaching the Prospect
http://nraomtr.blogspot.com/2011/11/approaching-prospect.html
What should I wear for sales calls?
http://www.businesstown.com/sales/face-qa.asp
4. Presentation
http://nraomtr.blogspot.com/2011/11/interacting-with-prospect-customer.html
5. Trial close
http://nraomtr.blogspot.com/2011/11/trial-close.html
6. Listening to the objections
http://nraomtr.blogspot.com/2011/11/prospect-objections-during-sales.html
7. Objection handling
8. Trial close
http://nraomtr.blogspot.com/2011/11/trial-close.html
9. Close
http://nraomtr.blogspot.com/2011/11/sales-closing-techniques.html
10. Follow-up and service
http://nraomtr.blogspot.com/2011/11/service-to-customer-follow-up-after.html
Additional web references on Selling
Selling Skills: Strategies and Methods - Online Book
http://bbssob.blogspot.com/
10 greatest salesmen of all time
http://www.inc.com/ss/10-greatest-salespeople-of-all-time
Business Development Mindset:Small Business Sales Planning and Execution
http://knol.google.com/k/aline-gianfagna/business-development-mindset/2d21qdrhcu6v4/2#
_________________
Welcome to Visitors from Knol.
As Knol is being discontinued from 1 May 2012, the article is moved here. The layout of this blog is made similar to Knol layout. Please subscribe to this site/blog and write your comments. This blog will management revision articles in core curriculum of MBA course. Suggestions welcome
_________________
Selling Process – Prospecting
Steps in selling process
1. Prospecting
2. Call planning
3. The visit – preliminaries
4. Presentation
5. Trial close
6. Listening to the objections
7. Objection handling
8. Trial close
9. Close
10. Follow-up and service
Prospecting
Prospecting identifies potential customers. Lead generation is a step prior to prospecting. A lead is also referred to as suspect. The term suspect indicates that a person is suspected of being a prospect. For every lead (or suspect), a salesman has to ask some questions and satisfy himself that there is chance that he may become a customer. Then that lead is categorized as qualified prospect.
The questions used in qualifying a lead as a prospect are:
1. Does the person need the products or services that I am offering?
2. Does the person perceive the need?
3. Does the person have sincere desire to fulfill his need?
4. Can this person’s need be converted into a want for the products that I am offering?
5. Does the individual have the ability to pay?
6. Will the transaction with this person be profitable?
The sales person will generate a list of prospects or qualified prospects for each period say for each day and make sales visits. Every salesman needs adequate list of prospects to earn his daily bread through sales.
How to generate leads and prospects?
The sources which provide leads can be categorized as follows:
· Cold calls
· Personal acquaintances
· Bird dogs
· People with influence in a locality
· Exhibitions and public events
· News paper and other media
· Lists and directories (telephone directory)
· Old accounts
Cold calling is door-to-door visit by the salesman to each house in a neighborhood to locate people with a need for the product he is offering.
Personal acquaintances can be the leads. They can also suggest their neighbors as leads.
Bird dogs are people, who know residents well such as real estate sales person, gas station attendant, medical shop person, etc. who can give some information.
People with influence in a locality like social workers, political leaders can be approached to get suggestions regarding persons who are likely to have the need for the product.
Exhibitions and public events can be used to attract leads. The salesman can distribution some literature or pamphlet or exhibit the product and the persons who approach him become the leads.
Newspapers and other media like internet can be gleaned to locate persons.
Telephone directory provides scope for cold calling through phone. Similarly other directories of various professionals etc. are a useful source for leads.
Old customers can be requested to suggest their friends who may have a need for the product.
Sales Process – Call Planning
Steps in Sales/selling process
1. Prospecting
2. Call planning
3. The visit – preliminaries
4. Presentation
5. Trial close
6. Listening to the objections
7. Objection handling
8. Trial close
9. Close
10. Follow-up and service
Step 2. Sales Call planning
Except in retail counter sales, and selling situations similar to this wherein the customer himself walks up to the salesman, salesman has to meet the prospect and interact with him to offer his product as a solution to the prospect’s need and want. Getting an opportunity to meet the prospect is the first step in this process. Cold calling can be tried, but for many items, the prospect may not be able to spare time at the instant the salesman barges in. the practice of making an appointment before calling on a prospect can save the salesperson hours in time wasted in traveling and waiting to see a person who is absent or busy.
Appointment making is often associated with a serious professional image, and it is treated as a gesture of respect toward a prospect. If the prospect gives an appointment, he will spare more time to interact with the salesperson and listen to his point of view, his presentation. A list of appointments aids a salesperson in allocating his day’s selling time. Appointments can be arranged by postcards & letters, telephone, emails, or during cold calls.
For making an appointment over telephone, it is advisable to plan and write down what is to be said. This will help in presenting the message concisely. The sales person has to identify himself clearly, state the purpose of the call and present interesting information about his product and seek the interview. The interview seeking sentence is preferably put forward as a question giving a choice of time to the prospect. Can I come today or is it more convenient to you tomorrow? Could it be in the morning or you prefer evening?
Appointments are easy to come by if your old satisfied customers talk to the prospect on behalf of you and arrange the interview.
A salesman has to believe in himself. You have a good offer for the prospect and he will benefit by accepting your offer. Confidence can be developed by knowing your products better and customer needs better. When you are seeking appointment, you have to be internally confident.
Successful salespeople make friends with people around the prospect. Car sales people speak to drivers as equals. The security persons of a building need to kept in good humor. They can make entry into the building easy and can even give some information on leads.
A salesperson need not waste time in endless waiting. Once an acceptable amount of waiting time has passed, he can inform that he has another appointment to make and can fix another time for the appointment.
The actually sales call needs to be planned. By planning the sales call the sales person becomes confident. As a part of the planning, an attempt is made to understand the need of the prospect. The prospect appreciates a salesman who shows an understanding of his need. A salesperson’s ability to be fluent in his interaction creates a professional image. This professional image increases sales.
The sales call plan has four components.
1. The call objective
2. The customer profile
3. The customer benefit plan
4. Presentation that takes into consideration the call objective, customer profile and the benefit plan.
The presentation that is planned must capture and maintain the prospect’s attention. It has to lead to prospect’s showing interest. It then has to increase his desire to own the product. Then only the action to buy will be undertaken by the prospect.
The salesperson has to ensure that the presentation/interaction that he has planned has statements, exhibits, and actions that result in attention, interest, desire and action on the part of the prospect. _____________________________
______________________________
Originally posted on Knol http://knol.google.com/k/ sales-process-call-planning#
Knol Number 33 Traffic rank 106